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We study the decay of correlation of the two-particle distribution function in a 
plane phase separating layer (e.g., a liquid in coexistence with its vapor). We 
argue that the decay may be poorer in this special case than in the more general 
situation of interfaces of arbitrary shape. The clustering is shown to be weaker 
than Ix _y [ - ( a -2 ) ,  d the space dimension, in contrast to the more general 
situation. In particular, we show that this poor clustering is entirely restricted to 
the interface itself. This stronger result allows to prove as a by-product the 
nonexistence of a plane interface in two dimensions. Furthermore we make 
some remarks concerning the physical consequences like, e.g., the degree of 
particle number fluctuations and the behavior of the compressibility in the 
interface. The results do hold for two-particle potentials of short range. 

KEY WORDS: Liquid-gas transition; interface region; long-range correla- 
tion of pair distribution function. 

1. INTRODUCTION 

An interesting topic of currently active research in fluid physics and more 
generally in statistical mechanics is the investigation of non-translation- 
invariant Gibbs states, which means in particular in the regime where 
several phases of a substance can spatially coexist, resp. where phase 
separation can occur in multicomponent systems. Of particular interest in 
this field is the behavior of the various local physical quantities in the 
interfacial region. While of interest in itself it is also of relevance in a 
broader context, namely, phase transitions of the first kind, which means 
usually, away from the critical point. Typical candidates are, e.g., the 
liquid-gas and liquid-solid transitions. 
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While there is a host of rigorous results concerning interfaces in lattice 
models, especially in the Ising model, (cf., e.g., the many papers of 
Lebowitz and coworkers, Gallavotti, etc.; as a recent account see Refs. 20 
and 21), there are relatively few exact results being accessible in the case of 
truly continuous systems (e.g., for the Widom-Rowlinson model (17)). As far 
as the liquid state in general is concerned the more recent state of the art is 
given in Refs. 18 and 19; an older reference is also Ref. 22. 

One of the main questions which seems to be still at issue at the 
moment is to what extent a stable liquid-gas interracial region can actually 
exist for the force of gravitation going to zero and the volume approaching 
infinity. There do exist several points of view which do either support the 
so-called capillary wave ansatz or the intrinsic local surface quantities 
concept (cf., e.g., Ref. 18, p. 79ff). As to this point we will make some 
sketchy remarks in Section 4 together with introducing a mechanism which 
might cure perhaps some of the nasty features occurring in this context. 

As a last point we want to mention that our approach is not restricted 
to the liquid-gas phase transition or one-component systems. In the case of 
several components, as, e.g., in the W - R  model, additional slight technical 
as well as computational modifications are, however, necessary, which shall 
be given elsewhere. The same applies to quantum liquids as, e.g., H%-He  4 
mixtures where Poisson brackets are replaced by commutators. 

The basic building block for most of the physically relevant quantities 
of classical statistical mechanics of continuous systems is the pair- 
distribution function (see any good textbook of fluid physics, e.g., Refs. 1, 
2, and 15). Hence it suffices usually to study the behavior of this quantity. 
One of the most significant effects on the behavior of physical properties 
as, e.g., compressibilities, specific heats, free energy, etc,  is produced by the 
degree of long-range correlation of this quantity. 

This influence is well known at the critical point, where it is displayed 
in the form of the critical opalescence. Furthermore, concerning classical 
crystals it was shown by Mermin that large fluctuations in the particle 
density, in other words, the well-known ]k[ -2 singularity in the Fourier 
spectrum, prevents the system from crystallizing in two dimensions (Ref. 3). 

If one wants to deal with the regime where phase separation can exist 
the usual methods which work well in the case of pure homogeneous phases 
do not apply. A crucial preassumption of the applied techniques is an at 
least rudimentary form of translation invariance. In two dimensions there is 
however a more recent paper of Fr6hlich and Pfister (Ref. 4) which does 
not use homogeneity but relies on free-energy estimates. The method 
however is sensible only in d = 2. 

A different approach to treat phase transitions in inhomogeneous 
systems (i.e., not invariant under translations, resp. rotations), was devel- 
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oped independently by Ph. A. Martin, Ch. Gruber, and coworkers, and the 
author in a series of papers. The two approaches have the advantage of 
working in any dimension and of giving sensible results for the distribution 
functions. While the above-mentioned authors started from the BBGKY 
hierarchy we, on the other side, exploited the so-called Kubo-Mart in-  
Schwinger relation ((A, B }) = B(B .  (A, H } )  (cf. Refs. 5-9), where Ref. 9 
yielded also results for the dynamical regime. 

A common feature of the above-cited papers was that by not assuming 
a rudimentary form of translation invariance, (e.g., under a Bravais lattice), 
a clustering of the two-particle, resp. three-particle, correlation functions 
only ~> cly 1 -y2l  -(d-l) was necessary if translation invariance was to be 
broken, (a short-range interaction assumed). On the other hand, for homo- 
geneous pure phases below T c it was well known for quite some time and 
for many special systems that the clustering is usually >~ lYl -Y2[-(a-2~. A 
general coordinate space proof of this result was given recently in Ref. 10. 

But one should emphasize that a system consisting of, e.g., finite liquid 
drops in coexistence with their vapor is quite distinct from, e.g., an ideal 
crystal phase, extending homogeneously to infinity. In the pure gas-phase, 
resp. liquid-phase, we expect the correlations to decay rather fast; the weak 
decay has to be attributed to the existence of the interfaces themselves. So 
there is no a priori reason to expect an analogous cluster behavior, in 
particular, the shape of the interfaces might play an important role. This is 
supported by the well-known difference of the vapor pressure as compared 
with the pressure inside the liquid drops, and which vanishes in case of a 
plane interface. 

In the following we want to treat the special but important case of a 
plane interfacial layer, separating, e.g., a liquid from its vapor phase. We 
shall rigorously show in Chapter 3 that the clustering of the two-partMe 
distribution function, more specifically pT(yl, Y2) := P2(Yl, Y2) -- P1(Y0" 
Pl(Y2), is extremely poor in the interface region itself, that is, the decay is 
weaker than [Yl -  yzl -(d-2~, d the space dimension, for l Y l -  Y2[ ~ oo in 
the interface. This confirms, extends, and quantifies the result of a recent 
interesting paper by M. S. Wertheim, who attacked this problem with the 
help of the direct correlation function method. (11~ As a by-product we 
prove the nonexistence of plane interface regions in two dimensions. In 
Chapter 4 we shall discuss the physical consequences which are automati- 
cally implied by this poor decay because of the pair distribution functions 
occurrence in almost all physically relevant quantities. 

As a final remark we want to mention a preprint of H. Narnhofer, (16) 
which we received after having finished this paper. There it is argued that 
there might occur difficulties in generating interfaces within the usual 
conceptual frame of statistical mechanics. On the other hand, the handling 
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and interchanging of various limiting procedures in the limit V ~  ce is 
crucial in this context. So, in our view, this point needs further clarification 
since exactly these long-range effects might invalidate the argumentation. 

2. CONCEPTS AND TERMINOLOGY 

The infinite phase space is the space of countable sequences X := (x i }, 
xi = (qi, Pi), qi, Pi ~ R d. Observables are smooth localized functions on 
phase space, e.g., for an n-particle quanti ty:  A ( X ) = ~ , ( z  . . . . . .  zo) 
a(xi, . . . . .  xi,), the summation extending over all ordered n-tuples, 
a( . )  a smooth symmetric function on (R2a) n. The Poisson bracket of A, B 
reads 

(A ,B  } (X)  := ~(OA/Oq~.  OB/Op~- OA/Op~. OB/Oqi) (1) 
i 

Remark. More details can be found in the above-mentioned papers. 
The expectation of A over the phase space is denoted by (A).  A 

particularly important quantity is the particle density at site y: 

n (y ) (X )  := ~, ,6(y - q,) (2) 
i 

and its expectation (n(y)> = ( ~ i 6 ( y -  qi)>. The n-particle distribution 
function O,(Yl, �9 . . ,  Y,) is defined by 

0~ . . . . .  yo) := Y, < ~ ( y , -  q , , ) . . . 8 ( y ~  - q,o)) (3) 
(i.) 

in particular, ( n ( y ) ) =  ol(y). Furthermore, we define the truncated two- 
particle correlation function: 

Of(Y,, Yz) : =  O2(Y,, Y2) - Pl(YOO,(Y2) (4) 

with Of(Y1, Y2) ~ 0  for lYl -Y2[ ~ oo in a definite pure phase. 
The various pure phases of the system with given macroscopic parame- 

ters are assumed to be generated in the thermodynamic limit via a proce- 
dure like the Bogoliubov quasi-average method, and by which measure, in 
particular, the phase boundaries are assumed to be given a definite posi- 
tion. It is however not clear whether this will work in this context, (cf., e.g., 
Ref. 20 and the remarks in the introduction), and for what space dimension 
of the system. 

While in the more general situations mentioned in the introduction one 
has to rely on other methods, we are in the following able to apply the 
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Bogoliubov inequality of classical statistical mechanics, which reads 

I ( (A,B ))12 < f l ( (B,  { B , ~ / ) ) ) ( A .  A)  (5) 

with A, B real quantities. 

3. THE DECAY OF CORRELATION IN THE INTERFACE 

The following calculation is made for the interesting space dimension 
d = 3, but is actually independent of it. The case d = 2 will be treated in a 
corollary at the end of the paper. 

The particles are assumed to interact via a two-body potential, V(q) 
= V(-q) ,  of short-range type. We will need it in the following technical 
form: 

f l  V(q)l Iq[2 dq< 

However, only the long-range behavior of the force is of relevance. That is, 
stronger singularities at q = 0 are allowed on physical grounds and which 
are usually compensated for by the vanishing of other quantities at coincid- 
ing points [cf. expression (22)]. On the other hand a true hard core might 
cause certain difficulties, as was already mentioned in Ref. 3. 

For notational simplicity we assume the interface region to be parallel 
to the x-y plane with z = 0 to belong to this interracial layer. Furthermore, 
we assume complete translation invariance with respect to the x-y direc- 
tions. The invariance under a Bravais lattice can be treated in complete 
analogy. As observable A in (5) we take the particle density n(y), B is 
generated by the density of the generator of translations in the z direction 
(for notational simplicity x, y, z as components of the vector y are in the 
following sometimes denoted y ~ y 2 y 3  to avoid confusion with the full 
position variables as, e.g., Yl, Y2 . . . .  ). 

The physical idea behind our approach is the following: If there exists 
an interfacial region this implies a pl(z)v a const, resp. OzOl(z)vaO for 
certain z values. This is exploited in (6). The detailed behavior of Ol(z) may 
be complicated (perhaps even oscillating as is the case in certain model 
calculations in Ref. 15 Chapter 4), but this property is the only relevant one 
in the following. The next step in our strategy is to build in properly the 
translation invariance with respect to the x-.v plane into the calculations. 
This is accomplished by replacing the local observable n(y) by a certain 
mean with respect to the x-y coordinates [cf. (8)]. 

This method was applied recently in Ref. 10, resp. Ref. 12 in the 
context of systems invariant under a full Bravais lattice. It was also 
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exploited in the realm of quantum field theory in connection with the 
Goldstone theorem, (cf. Refs. 13 and 14). That is, our personal contribution 
is the observation that a modification of these methods can be successfully 
applied to the physically important situation of phase boundaries and 
phase transitions of the first kind as, e.g., liquid-gas which was originally 
not accessible to these exact methods. The same does apply to the calcula- 
tion of the double Poisson brakets ({P, {P ,H}})  which we reproduce in 
this paper for reasons of self-containment and since the calculations are 
lengthy and a little bit tricky. 

We have 

We assume without loss of generality that ~z (n (y ) )  =/= 0 fory 3 --- 0. Further- 
more, for various reasons (cf. also Refs. 5 and 10), we replace the full 
generator 2 P7 by a localized version p3:__ 2P7"  fR (qi) with 

fR(y) =f(lyl/R), fbeing smooth withf(s) = 1 fors < 1, 

= 0  for s > 2 .  (7) 

Evidently, the expression (6) is not changed by this replacement provided 
that lYl < R. 

To exhibit the poor clustering in the y l_y2 plane we will use instead of 
~n(y)  = n (y )  - ( n ( y ) )  the following mean value on the right-hand side of 
(6): 

a.  := 1/I v . l f s . (y ) -  x.(y)a2 ca) 
with XR the characteristic function of the set VR = {yl(y~) 2 + (y2)2 < R 2) 
and j7 : - ( y i ,  y2). Again, owing to the translation invariance in the x-y  
plane the left-hand side of (6) will not be altered by replacing n(y)  by the 
corresponding mean with respect to yl, y2. 

The Bogoliubov inequality with these observables A R, p3 now reads 

0 v ~ 10z<n(y))z=o[ 2 < B({ e3 ,  { p3,  H )>. (A~. AR) (9) 

We will calculate the R dependence of the two expressions on the right- 
hand side separately. We have 

A.> = 1/tv.12 f f dydS' 
x (<n(y)n(y ' )> - <n(y)><n(y')>) 

= 1 / IgR[: fOf (N,O ) �9 IV R A gf~l (10) 
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We remind the reader that y3 = y , 3 =  0, ~ = y - ) 7 ' ;  IV a f-)V~] = 
f d y x R ( Y ) ' X R ( Y - - x )  is the volume of the intersection of V R and V R 
shifted by the vector ~. 

With IV R N V,{[ < ]VR[ and being = 0 for I~1 > 2R we have the upper 
bound: 

(A. .  A.)  ~ 1/I v.lfv=dx Io/(~)1 (11) 

Both on physical and mathematical grounds the truncated two-point func- 
tion should cluster for I~l ~ ce. Assuming for example that [O/(ff)[ < C .  
(1 + Ix]) -~ with a > 0, we arrive at the expression 

(ARAR)  < Cl R - ~  + C2 R - 2  (12) 

with Cl, C2 appropriately chosen (d = 3), that is, for poor clustering (i.e., 
a < 2), the dominating term behaves ~ R  -~. We want to emphasize 
however that a preassumption about the degree of clustering is not really 
essential in the following. For d = 2, in particular, the weakest possible 
cluster behavior turns out to be already sufficient. 

We now have to calculate the expression ( { P 3 , p 3 , H } ) ) .  The inner 
bracket yields 

= { ~ d" fR (q)), ~ (fl/)2/2m 
j i k-l-1 

3 2 E (oj) v(m- q~)(fT(m)-f.(m)f.(q.)) 
j ~ k  

+ E ( ~ 7 ) v ( ~  . - q~)fR(m)~)f . (qs) (15) 
j ~ k  

where (0i)V(qj - qi) = - (Oj)V(qj  - qi) has been used. 
Performing the expectation values yields 

the second 

= 1 / m ~ a ( P ? ) 2 0 ) f R ( q j ) -  ~a fR(qj)O)V(qj - q~) (13) 
j j=/-k 

Performing the other Poisson bracket yields two terms; the first reads 
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since the momenta are distributed according to a Maxwellian which is not 
affected by exterior fields, fixing the phase boundary, and which do act 
only on the coordinates. Furthermore we have 

since we are in an equilibrium state. This yields 

03 

=I/m<~j(p3)2(O)fR(qj)) 2 ) (18) 

The left-hand side occurs in < (p3, (p3,  H )), hence we are left with 

j} (oj) V(qj 

With the help of the distribution functions this can be written as 

3 2 f f v(y  y2) dyldy2 

+ 1/m .B-~fdy(O3fR(y))2Ol(y ) (20) 

where f i -  1 comes from the integration over the momenta. Owing to the 
symmetry of P2 with respect to Yl, Y2 and (03)2V = (0~fV we can give the 
integrand in the first integral the more symmetric shape: 1 / 2 ( O 3 y , ) 2 V ( s  - 

Yz)(fR (Y l) - fR (Y2)) 2" 
We will now take advantage of the special form of the function fR (Y) 

given in (7). The second integral of (20) can be estimated as follows: 

f dy(O~f(y/R))2o,(y)= R. f d/(O3f(y'))20~(R/) < c. R (21) 

since p~ is bounded. In the first integral we get 

3 2 

< ; d y  1(03) 2 V(Y)I(fdy2 (fR (Y + Y2) -- fR (Y2))2"suPP2(Y -~- Y2' Y2)) 

(22) 
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Furthermore 

] f ( y  + y 2 / R  ) _ f ( y 2 / R  ) [ = ( y+y2 /ROf  . dn <<. suPl~f[" [ y l / R  (23) 
a y2/ R 

The Y2 support of ( fR(Y + Y2)-  fR(Y2)) 2 for y fixed has a volume 
< C 'R  3. Putting these remarks together we arrive at 

"rhs of (22)"<  C"R3fdy l (O3y)2V(y)[ . [y l2 /R  2 <<. const �9 R (24) 

for short-range potentials as defined at the beginning of Chapter 3. 
We have thus arrived at the main conclusion of this paper: 

Theorem. Assuming a short-range potential, a clustering of the 
truncated two-particle correlation function [Pf(Yl ,Y;)[ <~ C-(1  + lY~-  
y2[) -a  in the interfacial layer, we have in three dimensions: 

[ ({P3,n(Y)})I  2 < lira const- R 1-~ 
R---> oo 

where P3 is the generator of translations in the direction perpendicular to 
the interface. That  is, if Ozn(y ) ~ 0 somewhere then Pf(Yl, ..v2) has a decay 
in the interface which is ~> C .  [Yl - y2l- 1! 

Corollary.  For two space dimensions there is no liquid-gas interface 
provided that there is any clustering at all of p2 r (which is of course 
physically desirable). 

S k e t c h  o f  Proof. Since the dimension of coordinate space played a 
role only in the estimate (24) (prefactor R 3 for d = 3 which becomes R 2 for 
d = 2), we can bound the left-hand side of (24) by a constant for d = 2. 
Furthermore, for d = 2, the weakest form of cluster behavior in a pure 
phase turns out to be sufficient in the expression (A R �9 Ae) .  With the 
translations parallel to the interface being unbroken, a general theorem says 
(cf. Ref. 23, p. 155), that suitable group means of observables with respect 
to this subgroup display "weak clustering." This entails in our case (re- 
member that A e, according to definition, is already an observable normal- 
ized with respect to its mean value!), that limR__,o~(A R �9 AR) = 0. That  is, 
for d = 2 we have always ( ( P 3 , n ( y ) } )  = O! 

Remarks .  (i) The sensible expression against, e.g., the formation of 
interfaces appears to be the quantity (ARAR)!  Only there appear the 
truncated two-particle distribution function and a domain of integration 
which takes the existence of the interface explicitly into account. 

(ii) The expression ( { p 3 , { p 3 , H } } )  on the other side was com- 
pletely general. Choosing a different domain of integration does not lead to 
better results. In particular, only the full distribution functions show up 
which do not decay! 
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4. PHYSICAL CONSEQUENCES 

We have shown that there is a particularly poor clustering in the 
interface region. We will now make a couple of comments concerning the 
physical and observational consequences of this weak decay. Let us choose 
a subvolume V lying in the phase separating layer with a fixed but 
macroscopic extension in the z direction, the x-y extension being variable. 
Standard statistical mechanics tells us that the particle number fluctuations 
in V can be expressed as 

=fvfvOf(r,r')drdr' (25) 

and the isothermal compressibility: 

KT = p - 1 .  fl lim ( (N  - (N) )2v) / (Nv~ (26) 
V--+ oo 

where in (26) we assume V to approach r in the x-y direction. 
Usually the above double integral is transformed into V. fvpf(r)dr 

which is only approximately correct for a sufficiently large V and a 
correlation extending only over several interatomic distances. Under this 
assumption the particle number fluctuations AN will behave ~ V 1/2 pro- 
vided that p f  is integrable. In our case p2 r is not of short range, even worse, 
the above integral may be divergent for V-+ oo as at the critical point. 
There are exactly two alternatives. Either the above integral over Of goes to 
infinity for V--> oo in the interface or Of displays a sufficiently oscillatory 
behavior (which is known for the first interparticle distances) so that the 
Riemann integral may exist in the limit while Of not being absolutely 
summable. 

The first alternative would imply strong fluctuations in the interface 
which is not implausible since one can imagine that there is a permanent 
considerable amount of diffusion of, e.g., liquid drops into the vapor phase 
and vice versa. This would yield a ~N v larger than ~ V  1/2 which may 
cause phenomena in the surface similar to critical opalescence and a very 
large local compressibility. On the other hand, a sufficiently strong oscilla- 
tion of 9 f  may provide a mutual compensation of the particle number 
fluctuations such that a normal A N n  V 1/2 would be restored. Up to now 
we have not found experimental evidence supporting one or the other 
possibility in the literature, but these experiments are obviously difficult to 
perform in the interracial layer. 

The derived results can now be interpreted in various ways. Either, as 
was already indicated in the introduction, there are no stable interfaces for 
d = 3 in a continuous system. Then the large fluctuations may just indicate 
this instability of the interface. Or there are large fluctuations and a stable 
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interface. The third alternative would be an oscillatory decay of correla- 
tions so that the particle number fluctuations in macroscopic volumes 
remain normal. 

While the first alternative is supported by the behavior of two- 
dimensional membranes and some lattice models there are at the moment 
no rigorous results for three-dimensional continuous models. In particular, 
we want to emphasize that the possible mechanism alluded to in the third 
alternative is typically absent in lattice models, where we have usually a 
nonoscillatory decay of correlations (and being displayed in the second 
Griffith inequality). Therefore we are not completely convinced that lattice 
models are reliable candidates in every respect. 
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